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Abstract—In 2022, The Autonomous welcomed Infineon Tech-
nologies as the Lead of the Expert Circle on Safety of Embedded
Artificial Intelligence. In the ongoing Expert Circle, we have
been developing dedicated solutions on how to use AI safely
for trajectory planning and control. The presented approaches
mainly build upon the results of EEmotion. EEmotion was a co-
funded project by the German Federal Ministry for Economic
Affairs and Climate Action (BMWK), coordinated by Infineon
and partially implemented with partners as ZF. During the
previous Main Event we had shown the advantages of an AI-
Enhanced trajectory controller, namely a 50% improvement
in tracking accuracy. Since then we have been extending the
approach to trajectory planning by suggesting AI enhanced
Model Predictive Control. This improves energy efficiency by
5%. To additionally ensure safety of the AI components we
developed a safety blueprint. This includes safety of the employed
AI components itself and the data used to develop them. We
showcase the conceptual safety blueprint on the example of run
time monitors for the AI enhanced trajectory control. Taken
together, we could show that AI solutions can reduce system
costs, increase energy efficiency and improve passenger comfort
while ensuring system safety.

Index Terms—Autonomous driving, Trajectory Control, Tra-
jectory Planning, AI safety, Runtime Monitors, Microcontroller

I. INTRODUCTION

Fig. 1. Autonomous driving compute chain of the conceptual steps from
environment perception to actuator values.

The autonomy of self-driving vehicles is based on four
major conceptual blocks along a compute chain as depicted in
Figure 1. In the first step the vehicle senses its environment,
typically via different imaging techniques. In a second step the

perceived environment must be interpreted to enable decision
making. Here, planned maneuver can for instance be whether
or not to perform a lane change. Based on the planned
maneuver the vehicle plans the desired tactical driving task
as the third step by calculating a trajectory. In the last step
this planned trajectory is executed by a trajectory controller.

The first two blocks for environmental perception and
interpretation heavily rely on high dimensional image data
and AI approaches for computer vision that typically require
powerful compute resources. The later blocks in the compute
chain are qualitatively different in that their input data is lower
dimensional and their execution is real time critical. This
makes them good candidates for deployment on automotive
microcontrollers such as the Infineon AURIXTM.

In this paper we demonstrate our development efforts on
AI enhancements of trajectory planning and control and how
we ensure their safety. We describe how we made existing but
fixed methods adaptable using machine learning in the next
two sections. To ensure safety of the developed AI methods
we describe in the following sections an AI safety assurance
based on existing and new ISO standards. This is followed by
the description of the implementation for run time monitors
as integral part of the safety concept.

Data for training and evaluation of the presented AI ap-
proaches was based on simulations. We used a software in
the loop setup consisting of a digital twin of a modern
vehicle implemented in MATLAB/Simulink coupled with IPG
CarMaker. This simulation based approach allowed quick iter-
ations during development. For real world assessment the AI
enhanced trajectory controller together with the reconstruction
based run time monitor where successfully deployed in a test
vehicle and show cased their performance improvements.

II. ENERGY EFFICIENT AI-ENHANCED TRAJECTORY
PLANNING

Model Predictive Control (MPC) has emerged as a powerful
optimization-based approach for trajectory planning in com-
plex environments. By leveraging a predictive model of the



vehicle dynamics, MPC enables the computation of optimal
control inputs (trajectory) that minimize a performance crite-
rion while satisfying constraints on system states and inputs
[1]. Nevertheless, complex MPC formulations often incur
excessive computational overhead, rendering them infeasible
for deployment on resource-constrained microcontroller units
(MCUs). We propose a hybrid approach that integrates Model
Predictive Control (MPC) with a Reinforcement Learning (RL)
agent [2], which effectively offloads some of the computational
complexity while maintaining high adaptability (see Figure 2).
Additionally, by moving the energy efficiency terms out of the
MPC’s cost function into the reward term of the reinforcement
learning agent, implementation complexity and computational
costs can be reduced.

Fig. 2. RL agent running parallel to MPC planner.

The RL approach allows for semi-automated adaptation to
arbitrary scenarios [3]. For the energy efficiency use case we
selected a longitudinal planning scenario with heavy traffic and
rapidly varying velocities, simulating a highway congestion
build-up. A single training scenario instance is modelled,
which is then parameterized and randomized during the agent
training. The agent’s reward function is designed to balance
the maneuver tracking error and energy consumption.

Using this hybrid approach, we were able to gain up to 5%
efficiency improvement in simulation compared to the MPC
alone.

III. AI-ENHANCED TRAJECTORY CONTROLLER

To leverage the energy savings from an AI enhanced tra-
jectory planner, the trajectory controller as the final step in
the compute chain has to ensure that the vehicle follows
the planned trajectory as closely as possible. Conventional
control algorithms suffer from limitations such as the lack
of adaptivity to dynamic environments, high computational
demands and complex parameter tuning. We present an AI-
Enhanced trajectory control approach that alleviates these
limitations which has been developed within the German
funding project EEmotion together with ZF. AI allows to
make a classical PID controller adaptive. We trained a 3-
layer MLP mapping information about scene, maneuver and
dynamic vehicle parameters into PID gains (see Figure 3).
The combination of a PID controller with a small neural
network is still numerically simpler than a more complex

model predictive controller and at the same time profits from
AI accelerators on modern automotive MCUs such as the latest
generation AURIXTM.

Fig. 3. AI-Enhanced PID Controller.

The proposed solution has been tested in the simulation
environment as well as on the test track. As the test scenario
in the simulation, we chose Nürburgring and we compared
the performance of the proposed solution with conventional -
fixed parameter PID. From Figure 4, one can observe that the
proposed algorithm exhibits ∼50% improvement of the root
mean squared error for the cross track error in comparison to
conventional PID.

Fig. 4. Tracking accuracy for conventional and AI-enhanced PID processed
on Nürburgring in simulation environment.

In the next step, the proposed AI-Enhanced PID controller
has been deployed on the AURIXTM- TC4x integrated into a
test vehicle from ZF and compared with AI-Enhanced MPC
on a real test track. Specifically, we tested our algorithm on
double lane change scenarios. From the Figure 5, one can
notice the proposed solution achieves similar tracking accuracy
to AI-Enhanced MPC, while maintaining low-computational
overhead for efficient execution on automotive MCU.



Fig. 5. Tracking accuracy for AI-enhanced MPC (blue) and AI-enhanced PID
(red) of a real double lane change scenario on ZF test track.

IV. AI SAFETY ASSURANCE

The deployment of AI-based system calls for methodologies
to cover the safety aspect of their components and overall
behavior. The most relevant standards for AI and safety
in the automotive domain interact together, namely ISOs
26262, 21448 (SOTIF), and 8800. We show a comprehensive
framework, based on the established V-model outlined in ISO
26262, to ensure the reliability and safe deployment of AI
technologies within the automotive industry. The activities
from SOTIF and ISO 8800 are mapped into this V-model and
separated into three levels of abstraction: vehicle, system, and
component levels. Additionally, the recently passed EU AI Act
imposes regulations for the AI system. Safety-critical systems
like AI-based vehicle trajectory planning and control are
categorized as high-risk AI systems and have some associated
requirements. To comply with the EU AI Act, one must
conduct an assessment to determine whether the development
process which adheres to the mentioned standards adequately
encompasses the regulatory requirements outlined in the EU
AI Act for high-risk AI systems.

Since AI models are data-driven, one first must ensure the
safety of the data based on standards which include: data com-
pleteness, integrity and correctness. Additionally, the correct
selection of data has to be ensured by the correct definition of
the Operational Design Domain (ODD) and instance scenarios.
The safety assurance during the AI lifetime forms a cycle
as shown in 6. We describe a procedural approach how to
adopt strategies outlined in SOTIF and ISO PAS 8800 and
apply them to trajectory planning and control. The latter is
drawn from a framework which covers the entire lifecycle of
safety-critical AI systems including: Concept phase, AI system
development, and AI component development activities as well
as verification and validation, and operational measures.

We discuss specific technical approaches that one can put
into action like runtime monitors, redundant components for
robustness and fault tolerance, and continuous monitoring
including collection of data when insufficiencies are detected.

V. RECONSTRUCTION BASED RUNTIME MONITORING

Runtime monitors act as an essential part of the safety con-
cept for the previously introduced AI enhanced components.
We showcase this here on the example of the trajectory con-
troller. Runtime monitors are necessary on both the input and

Fig. 6. Schematic of AI safety lifecycle depicting continuous safety assurance.

the output of the controller 7. On the input side monitoring has
to ensure that the planned trajectories lie within the specified
operational design domain. As the controller is designed for
the ODD trajectories outside the ODD could not be handled
safely. A runtime monitor on the output side limits the impact
of the controller onto actuators.

Fig. 7. a) Runtime monitors on the input and output side of the trajectory
controller. b) General architecture of reconstruction based outlier detection
models: the input data is compressed into a lower dimensional latent space
followed by reconstruction back to the original space.

Functionally runtime monitors need to detect when the seen
data deviates from the training data making them anomaly
detectors. The technical implementation highly depends on the
dimensionality and complexity of the data. The output of the
trajectory controller is the steering angle. Due to the inertia
of the vehicle and the update interval of 5 ms simple linear
extrapolation is a sufficient method to detect defective steering
angle values.

The planned trajectory as input for the controller has mul-
tiple dimension such as position, angle, curvature & velocity.
In addition, assessment of the trajectory requires the context
of the current driving situation such as the position and
velocity of the ego vehicle. Thus, the data on the input side
of the trajectory controller is multidimensional and complex
requiring a potent monitoring approach. We employed estab-
lished reconstruction based neural networks so called auto
encoders [5] as runtime monitors. An autoencoder compresses
the input data to a lower dimensional latent space followed by
a decompression back to the original data space. Comparing
the input of an autoencoder to its reconstruction on the output
allows to calculate the reconstruction error. During training the
autoencoder this error is minimised allowing the model to find
an effective mode of the compression-decompression scheme



for defect free data. We use the reconstruction error as a metric
to classify unseen data. Defective input data would lead to a
large reconstruction error allowing to effectively detect safety
critical trajectories.

TABLE I
STATISTICAL METRICS TO COMPARE THREE DIFFERENT MODEL TYPES.
F1: F1 SCORE, FPR: FALSE POSITIVE RATE, FNR: FALSE NEGATIVE

RATE

Model F1 Test FPR Test FNR Test
Base Line 0.934 0.184 0.07

Autoencoder 0.981 0.098 0.005
Variational Autoencoder 0.982 0.096 0.004

We tested three different reconstruction based model ar-
chitectures: 1) Principle component analysis followed by its
inverse transform. PCA is a common linear technique for
dimensionality reduction and in the given context it acts as
a linear base line model [5]. 2) An autoencoder based on a
simple multilayer perceptron or fully connected architecture.
3) A variational autoencoder as an extension of the regular
autoencoder. As a generative model it can generate multiple
reconstructions via repeated sampling [4]. This can provide
better prediction stability at the cost of higher computational
demands.

Fig. 8. Distributions of the reconstruction error for training (light green)
and test scenario (dark green) for all three tested model types. Horizontal
grey lines indicate the threshold values that optimally separate clean from
defective data leading to statistical metrics shown in table I.

We used the Nürburging race track implemented in IPG
CarMaker as training scenario and tested the models on various
lane change scenarios. In both data sets we injected synthetic
defects to assess the detection quality. The goal for all three
models is to clearly separate clean from defective data as
shown in Figure 8. Statistical assessment shows that a simple
MLP based autoencoder can classify clean from defective data
on better than a linear base line model (Figure 8 and Table
I). Increasing model complexity to a variational autoencoder
does not improve classification quality substantially.

After deployment of the trained autoencoder on the Infineon
AURIXTM automotive microcontroller it has a memory foot-
print of ∼40 kb and a latency of ∼12 µs allowing real time
execution. We showed the functionality of the autoencoder
alongside the described AI enhanced trajectory controller in a
test vehicle on a test track with synthetic defect injections.

VI. SUMMARY

In conclusion, the proposed approaches for trajectory plan-
ning and control for an autonomous vehicle can be leveraged
by utilizing machine learning techniques in several aspects.
We showed that the energy efficiency of the driving task is
mainly affected by an proper planning of the trajectory.

Using Reinforcement Learning to anticipate energy savings
along the longitudinal path can lead to an reduction of up to
5% for the energy consumption. However, we strongly belief
that there is even a higher potential extending the approach to
act on more planning parameters and complex scenarios.

We found that using a simple MLP to adjust the PID gains
during runtime can improve the overall tracking accuracy by
up to 50% compared to a non AI PID trajectory controller.
In addition, we showed that the AI-driven PID performs
in a similar magnitude of accuracy related to a nonlinear
AI-enhanced MPC by consuming much less computational
resources on the AURIXTM- TC4x.

Regarding the safety assessment of AI-based systems, the
blue print we describe can be applied to different applications
when the individual details are adapted. One must bring safety
elements into the context of the target application.

To ensure safe operation of our proposed AI functionalities
we developed the safety assessment based on existing and
new standards. Run time monitors are an integral part of the
safety approach. We showed that reconstruction based neural
networks can act as runtime monitors for an AI enhanced
trajectory controller and reliably detect defective trajectories.
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